The Gy mutation: another cause of X-linked hypophosphatemia in mouse.

نویسندگان

  • M F Lyon
  • C R Scriver
  • L R Baker
  • H S Tenenhouse
  • J Kronick
  • S Mandla
چکیده

An X-linked dominant mutation (gyro, gene symbol Gy) in the laboratory mouse causes hypophosphatemia, rickets/osteomalacia, circling behavior, inner ear abnormalities, and sterility in males and a milder phenotype in females. Gy maps closely (crossover value 0.4-0.8%) to another X-linked gene (Hyp) that also causes hypophosphatemia in the mouse. Gy and Hyp genes have similar quantitative expression in serum phosphorus values, renal excretion of phosphate, and impairment of Na+/phosphate cotransport by renal brush-border membrane vesicles. These findings indicate that independent translation products of two X-linked genes serve phosphate transport in mouse kidney and thereby control phosphate content of extracellular fluid. The Gy translation product, unlike the Hyp product, is also expressed in the inner ear. These findings have implications for our understanding of the human counterpart known as "X-linked hypophosphatemia."

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene.

Two mouse mutations gyro (Gy) and hypophosphatemia (Hyp) are mouse models for X-linked hypophosphatemic rickets and have been shown to be deleted for the 5' and 3' end of the mouse homolog of PHEX (phosphate regulating gene with homologies to endopeptidases on the X chromosome; formerly called PEX), respectively. In addition to the metabolic disorder observed in Hyp mice, male Gy mice are steri...

متن کامل

Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets.

A new dominant mutation in the laboratory mouse, hypophosphatemia (gene symbol Hyp), has been identified. The Hyp gene is located on the X-chromosome and maps at the distal end. Mutant mice are characterized by hypophosphatemia, bone changes resembling rickets, diminished bone ash, dwarfism, and high fractional excretion of phosphate anion (low net tubular reabsorption). Phosphate supplementati...

متن کامل

Normal regulation of calcitriol production in Gy mice. Evidence for biochemical heterogeneity in the X-linked hypophosphatemic diseases.

Phenotypic heterogeneity in X-linked hypophosphatemic rickets (XLH) is ascribed to variable penetrance of the genetic abnormality. However, studies of hypophosphatemic (Hyp) and gyrorotary (Gy) mice indicate that mutations at different loci along the X chromosome may underlie the genetically transmitted hypophosphatemic disorders. Thus, genetic heterogeneity may be a determinant of the phenotyp...

متن کامل

Intrinsic mineralization defect in Hyp mouse osteoblasts.

X-linked hypophosphatemia (XLH) is caused by inactivating mutations of PEX, an endopeptidase of uncertain function. This defect is shared by Hyp mice, the murine homologue of the human disease, in which a 3' Pex deletion has been documented. In the present study, we report that immortalized osteoblasts derived from the simian virus 40 (SV40) transgenic Hyp mouse (TMOb- Hyp) have an impaired cap...

متن کامل

Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia.

Patients with X-linked hypophosphatemia (XLH) and the hyp-mouse, a model of XLH characterized by a deletion in the Phex gene, manifest hypophosphatemia, renal phosphate wasting, and rickets/osteomalacia. Cloning of the PHEX/Phex gene and mutations in affected patients and hyp-mice established that alterations in PHEX/Phex expression underlie XLH. Although PHEX/Phex expression occurs primarily i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 13  شماره 

صفحات  -

تاریخ انتشار 1986